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Abstract— The ability to predict crime is incredibly
useful for police departments, city planners, and many
other parties, but thus far current approaches have not
made use of recent developments of machine learning
techniques. In this paper, we present a novel approach
to this task: Gaussian processes regression. Gaussian
processes (GP) are a rich family of distributions that are
able to learn functions. We train GPs on historic crime
data to learn the underlying probability distribution of
crime incidence to make predictions on future crime
distributions.

I. INTRODUCTION

The increased availability of open crime statistics
has made it possible to use new machine learning
techniques to aid in crime detection and prevention
in order to help cities decide how to allocate scarce
police resources. For example, foreknowledge on where
a crime is likely to occur can tell police departments
where and when additional officers could be stationed
to preempt any crime. Detecting these crime-prone ar-
eas, also known as hotspots, has been a fixture of crime
prevention. However, law enforcement agencies across
the United States have only recently begun moving
away from outdated analytic techniques (such as hot-
spot identification )| towards predictive approaches, such
as hot-spot identification, regression, classification, and
clustering models [6] [8]. Despite the increased interest
in predictive analytics with large data demand and
complexity, two problems remain: (1) conventional ap-
proaches remain prevalent due to their ease of use, and
(2) more recent advancements in the ML community,
such as neural networks and Gaussian processes, have
not been explored with respect to this problem.

In this paper, we focus on tackling the second issue.
In particular, we apply Gaussian processes (GP) to the
task of predicting crime distribution in the selected
cities of Boston and San Francisco. GPs are powerful
non-parametric models that have proven effective in
predicting other real-world, cyclical time-series data
such as CO2 emissions and human motion [12]. In the
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Fig. 1.  Distribution over the geography of tested cities with
different models.

following sections, we explore the the state of the art in
terms of positive definite kernels [3], and compare the
resulting crime predictions with current baselines. We
conclude with a discussion on the applicability of GPs
to crime prediction, including their increasing accessi-
bility, which combined with their power, demonstrates
their usability in helping police departments and other
interested individuals efficiently allocate resources.

II. MODEL

Formally, a Gaussian process is a collection of ran-
dom variables, any finite number of which have a joint
Gaussian distribution [7]. An intuitive interpretation of
a GP arises when we think of it as a distribution over
functions. GPs are a generalization of normal distri-
butions to then infinite space of continuous functions
(rather than continuous r.v.s). In this interpretations, any
finite set of functions generated from a drawn function
f must be jointly distributed. Therefore, in training, we
attempt to learn the underlying function space as seen
in 2] Continuing the analogy to a normal distribution,
if a function f(x) follows a GP distribution, then we
write

f(x) ~ GP(m(x), K(x,X))



where the GP is completely specified by a mean
function m(x) and positive definite covariance function
k(x,x’). Each are defined:

m(x) = E[f(x)]
Kz, 2') = E[(f(x) = m(x))(f(x) = m(x))]

Following the definition of a GP, given a collection
of points X, f(X) follows a multivariate normal distri-
bution:

p(fIX) = N(flp, K)

Kij = r(xi,X;)

n= (m(Xl), ce ,m(XN))

The most important hyper-parameter when working
with Gaussian processes is the choice of the kernel
function. The predictive performance of the GP is
almost exclusively determined by this parameter. This
is due to the fact that the kernel function determines
if two points are “similar” in the input space to the
drawn functions. It is this similarity between the points
x; ~ x; that force the output variables f(xz;) ~ f(z;)
to be be close in value (with some added e noise)
[4]. Thus, the kernel function determines the range of
possible shapes that the G P will learn, and as we move
further “away” from the input training data, impact
more directly the predicted results.

One of the most common choice in literature, and
one that has proven effective in many methods, is
the squared exponential function || We present the
multivariate form:

hse(x, X)) = 02 exp(—%(x ~X)TM(x — X))

where M is a diagonal matrix: M = diag(1~2). The
parameters are 0]2@, the vertical scale of the function,
and 1, the horizontal scale with [; the scale factor
for dimension d. A large scale factor for a dimension
means that the feature is relatively less important. Often
times we also assume that we have noisy output, so we
add the noise term o2y Wwith 0y = 1 if x = X/, 0
otherwise.

Two other kernels worth mentioning because we
make use of them in this paper are the periodic kernel:

Fer(%,X) = 0 exp(— 5 Z(Sm@d(a;d ),

As the name suggests, the periodic kernel is periodic,
and thus is useful for capturing cyclic patterns in

'Also referred to as the the radial basis function (RBF)

data. The parameters 0]2( again controls the vertical
and horizontal scales respectively, and serves a similar
purpose of measuring the importance of each parameter
as is the case with the exponential kernel. On the other
hand, A4 controls the wavelength along dimension d,
which relates to the frequency with which the kernel
repeats itself ﬂ
We also have the linear kernel:

Kiin(x,X') = o + Ufc(x —o)'(x —¢)

The parameters o2 and o2 are the bias and scale

term, similar to that of linear regression. In fact, if we
were to simply use the linear kernel as our covariance
function, we would actually be performing Bayesian
linear regression [1]. The reason we include this kernel
is that we can combine kernels via simple operations
such as addition or multiplication and still have a valid
kernel. Combining kernels in this way allows us to
more accurately model different types of patterns.

Q) Y.

le

Fig. 2. Mixed graphical model for a noisy Gaussian process with
two training points and one test point x*. The function values f; =
f(x;) are all interconnected with edge weight x(x;,x;) while y;
is the noisy output. We want to be able to predict f(x*). Figure
borrowed from [4]

Figure [2] shows the general graphical model for a
Gaussian Process.

ITII. INFERENCE

We now describe how to make predictions with
Gaussian process regression. We assume we have seen
data points {x;,y;}X, where y; is the noisy output
of the underlying function f. In other words, y; =
f(x;) + € with € ~ N(0,02). We denote X = {x;}}V,
and y = {y;}¥,. We want to make predictions on a
new set of inputs X* = {x %1- Equivalently, we want

2For a more detailed, yet accessible approach to kernels, we
recommend the Kernel cookbook by David Duvenaud


http://people.seas.harvard.edu/~dduvenaud/cookbook/

f(x}) for all 4, the entire vector of which we denote
i

From our model, we know that y and f* are jointly
Gaussian distributed:

()= (& )

where we assume that the mean of both is zero,
K. = cov(y,f*), and K.. = cov(f",f*). Then we
can use standard Gaussian conjugacy results to get the
condition distribution of f*:

p(f1X*, X, y) = N(F| o, 2)
pe =K/Kly
3. =K. —K/K, 'K,

We take for our predictions the maximum a posteriori
estimate, which for a Gaussian is the mean. Once the
results are calculated, we convert them to a standard
probability distribution by normalizing over the features
space.

One immediate complication is that it is not numer-
ically stable to simply invert K, to compute the mean.
Instead, we use a Cholesky decomposition, which we
know exists because the kernel is positive definite. So,
the final algorithm, which we take from Murphy [4], is
as follows

Algorithm 1: GP Regression

1 L = cholesky(K,)

2 a=L"\(L\y))

3 py =K o

4 logp(y|X) = —%yTa — > ;log Ly —

% log(27)

Note that this algorithm is independent of the chosen
kernel function. Therefore, we can abstract the kernel
function so that we are free to explore different kernels

IV. RELATED WORK

Though the data-driven techniques for crime predic-
tion have received increased research focus in recent
years, there has been surprisingly little research on ap-
plying machine learning techniques to the task of crime
prediction. The current cutting edge relies on older
techniques, such as linear regression and clustering.
Even current research in the field tends to approach the
problem from a more analytic perspective, rather than

3For more details, check our |github!

a predictive model-focused approach. Traditionally, re-
search has focused on either identifying hotspots of
crime or clustering criminal activity by type of crime.
Our paper falls in the former, and we proceed as such.

The simplest approach to crime hotspotting, and
indeed one used often in practice today [5], is simply
to analyze historical data and take historical high crime
areas to be the high crime areas in the future [6].
We base our baseline model on this common method
of crime prediction. The current state of the art in
crime prediction is kernel density estimation (KDE), a
technique similar to Gaussian processes. Some made-
for-police software employs this technique [6], and it
is still prevalent in research, as Gerber [2] used it
with Twitter data to predict crime. To our knowledge,
complex machine learning models such as Gaussian
processes, neural networks, etc. have not been applied
to this domain. Even those techniques that have found
some success are nonetheless not typically applied due
to their difficulty or un-interpret-ability. In this paper,
while we focus on exposition of a novel technique,
we make an effort to make our results and software
accessible to other researchers in the hope of creating
guiding the production of an intuitive system.

However, shifting focus back to the research pre-
sented, we note that most attention has gone towards
identifying spatial patterns in crime data, such as geo-
graphic distribution of crime. Extension appear limited
to more complex categorization of the crime by type,
weapon used, etc. Temporal patterns in the data receive
far less attention [8], though it is common knowledge
that crime tends to be cyclic. In this sense, the afore-
mentioned approaches are limited in that they do not
seek to incorporate temporal patterns or changes. There
have been some attempts to consider temporal features
such as time of day or season [6], but to our knowledge
there is no comprehensive model that takes into account
spatial features as well as larger macro trends to be
found in spatial data.

Gaussian processes have been quite widely studied
[7] and have been used for a variety of regression
tasks, ranging from real-time tracking [9] to water
resource usage [11]. In general their application to
time-series is not a new; their ability to predict time-
series data relatively well is known. In fact, we find
it surprising that these models have not been applied
to the seemingly simple task of predicting crime data,
and therefore maintain a very simplistic approach in
our model to avoid over-complicating the research.


https://github.com/kandluis/crime-prediction

V. EXPERIMENTAL SETUP
A. Dataset

We use public city crime datasets from Boston
and San Francisco. These datasets document reported
crimes that occur from 2012-2015 and 2003-2015 re-
spectively. The datasets contained 253075 and 1834080
entries respectively. We also performed preliminary
exploration on a the crime data set from Chicago,
though the size of the data proved restrictive with our
limited computational resources. Each dataset contains
information on the type of crime, the time and date of
the crime, geographic information including ward and
latitude/longitude, etc.

For our experiments, we extracted the latitude and
longitude of the crime, and the date of the crime. We
created n buckets for each of latitude and longitude, for
a total of n? buckets, where n is an additional hyper-
parameter to tune. We attempted tuning of this hyper-
parameter using standard techniques such a gradient
ascent on the log-likelihood. However, we found no
optimal parameter, with the log-likelihood increasing
for the tested values of n, which ranged from n =1 to
n = 25 on the Boston data set and n = 2 to n = 15
on the San Francisco data. We also convert the date to
months since first month in the dataset. Lastly, once the
data has been partitioned for a fixed n value, we count
the number of crimes in each region as specified by
the Latitude and Longitude. We also clean the data of
outliers, in particular, we remove the last month of the
crime data from each data set as each is incomplete.
We found no other immediately discrepancies in the
data, even after thorough preliminary analysis

Testing data consists of two methods: (1) holding out
the last year of crime data and (2) randomly splitting
into 80% training data and 20% testing. We found
method (1) to be the most informative and also the most
effective, and therefore trained all of our models under
this method. Method (2) was used for training only
for the baseline and the standard exponential kernel.
Due to computational limitations, we refrained from
continuing the use of method (2).

All data in the obtained data sets was ignored except
for the three features mentioned above. We expect that
incorporating more of this data, while increasing the
computational complexity of training our model, will
prove extremely useful.

B. Baselines

Our baseline for future months is historical average
crime count per bucket. This is an approach still

employed today, mainly because it has proven effective.
We then normalize the count in each bucket by the total
in order to get a probability distribution.

To compare our method against the baseline, we
compute the Kullback-Leibler (KL) divergence of both
the baseline distribution and the GP distribution with
the true distribution for the most recent year. That is,
we compute:

p(7)

L(pllq) = Zp B

KL divergence gives a measure of the cost of model-
ing distribution p with distribution ¢, so a lower KL
divergence is better. Furthermore, KL divergence is
interpret-able as measuring the Multiple interpretations
of KL divergence exists, but among the best, we have
(1) KL divergence as a measure of information gained
when we move from the distribution ¢ to the distri-
bution p (from the distribution our model computes
to that computed observed). In this sense, the KL
divergence measures the amount of information lost
through our model as opposed to actually waiting to
observe the data. A second interpretation, which might
be more intuitive to computer scientists, is that of KL
divergence measuring the expected number of extra
bits required to encode samples from p using a code
optimized for ¢ rather than the code optimized for p.
The latter interpretations is the most suitable for our
model.

C. Implementation

We implemented Gaussian process regression our-
selves as well as two kernels, the squared exponential
kernel and a periodic kernel. To verify the correctness
of our code, we compare the computed likelihood of
our model against that of the GPy library for the
same kernel and inputs (https://github.com/
SheffieldML/GPy). After verifying correctness, we
use our own kernels for future computations, with the
exception of computations found to be too expensive
(such as training over a large parameter space). In
such scenarios, we make use of the GPy framework
to calculate results presented in this paper.

Newt, we fix the noise variance to be the standard
deviation of the training data, then attempt to tune the
parameters by maximizing log likelihood (as computed
via [TI). While this fixed value was picked based on
intuition, we have consider some other alternatives. For
example, we can make use of the law of total variance


https://github.com/SheffieldML/GPy
https://github.com/SheffieldML/GPy

to calculate the appropriate noise values as given our
data D to be:

E[Var(X | D)] = Var(X) — Var[E(X | D)]

Further exploration into this idea is useful, though we
defer such exploration to future research.

We use the scipy implementation of L-BFGS for
a max of 150 iterations, or less if the optimization
procedure converges beforehand, in order to optimize
our kernel parameters. All parameters for all kernels are
initialized to the default values if using the GPy library,
otherwise all parameters are initialized to a default
value ofl. The kernel’s are then optimized using the
log-likelihood as the output function. We do not expect
over-fitting to occur, especially given the statistical
nature of GPs.

Once we have the tuned model, we generate predic-
tions for the amount of crime in each bucket for the
most recent year (or the random points, if that was the
hold-out data). The predictions tended to be in par most
of the time, though we did find that some of the results
appeared somewhat intuitive.

For example, most of the he models predicted posi-
tive values, but some times a model would try to predict
slightly negative values. In such a scenario, the values
were clipped to be some € > 0. Then, we normalize
by the total crime across the entire test set to get a
probability distribution of crime for the most recent
year. This way, we are able to not only get relative
probabilities of crime across geography, but over time
as well.

We also decided to explore combinations of kernels,
for which we used the GPy library. Using [1] as guide,
we decided to fit the following kernels: linear * periodic
and squared exponential * periodic. The reason for this
choice of kernels is obvious. We wish to incorporate
some fixed periodicity into our data. We propose that
yet another kernel available for exploration is the
locally periodic kernel, which might prove sufficient
on its own at tackling the task of correctly interpolating
the crime data points.

For each composite kernel, we use the same opti-
mization process as described above. We also calculate
the marginal likelihood and the K L divergence using
the predictive methods already described.

VI. RESULTS

Our main results are presented in Tables 1 and 2 for
Boston and San Francisco respectively, presenting our
main quantitative findings. We also include Figures [/}

-
e I jdj\ l"’“

w bk
NLIWTIP LMY

|
M “‘
" H’ m

\ iU N
it ‘«ﬂw“,‘“%"l‘u ‘UU‘ ‘J ‘,J‘ U

Fig. 3. The crime count (top) and crime distribution (bottom) over
our entire sample set using the results of our baseline model. Note
that the baseline model tends to over-predict as we move further
away from our training data, temporally.

Fig. 4. (Left) Crime count predictions using a combination of
linear-times-periodic kernel. The results are promising, though we
still run into the issue of under-fitting the crime predictions. The
predictions are for the month immediately following our training
data. (Right) We presented the normalized distribution of crime over
the regions for the final month in our testing set. The distribution
is for the final month in our testing data. The plot is a clear
demonstration of the predictive power of GPs.

[3| and [] for reference in the discussion, as they provide
a qualitative interpretations to our data.

Figures [3| show the predicted distribution overlaid
with the test data distribution. The average appears to
be quite adequate at predicting crime in the future,
especially when it comes to geographical predictions.
However, it has many theoretical limitations as it will
not be able to learn from previous cyclic patterns, and
in particular, it is unable to learn that crime has a
general decreasing trend.

We first explored the hyper-parameter n to attempt
to find an optimal bucketization of our regions. We
discovered that such a problem appears to be somewhat
ill-defined, and the results provided little insight. More
computational resources are required in order to verify
the existence of an optimal, though we hypothesized
that the log-likelihood will continue to increase as the
hyper-parameter n increases. See Figure [/| for a sample
graph of the results. KL divergence was too found to
be insufficient in this regard (See Figure [3), as it too
increases without bound. We settled on picking a value



Linear*Periodic Kernel on Boston City Data
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Fig. 5. KL Divergence plotted against bucket size. The calcula-
tions are done on the Boston data set and occurs with optimized
linear*periodic kernels. The optimization is done using standard
maximization techniques.
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Fig. 6. Crime Count and distribution for the optimized standard
exponential kernel.

which matched the computational resources available
to us.

We expected the composite kernels to perform best
as they would be able to capture not only the temporal
cycles in crime behavior, but also the larger macro
trend of decreasing amount of crime. Interestingly,
however, the linear-periodic kernel had mixed results.
In Boston, it achieved the lowest KL divergence but the
highest likelihood, both by significant margins. In San
Francisco, it had the lowest likelihood but the highest
KL divergence. We speculate that one reason for this
is that the composite kernels have more parameters.
For a periodic kernel alone, there are two parameters,
wavelength and scale, for each dimension. Combining
with a squared exponential or linear kernel adds to
the number of parameters to be tuned. With additional
optimization, we think the composite kernels would
be able to perform better than the simpler kernels. In
particular, we’ve begun exploration of the input param-
eter space through the use of Spearmint, a Bayesian
Optmization framework based on GPs [10]. Results
are currently preliminary, and the results presented in
the paper make use of more typical techniques such as
gradient descent/ascent and LBFG-S.

A particular point of interest was the inability for

the normal square exponential kernel to predict precise
crime counts in far out into the future. As we can
see from Figure [6] the standard exponential kernel
decreases rapidly temporally after the first few months.
We believe this either to be a (1) limitation of the model
itself, as we assign as 0 mean function prior or (2) an
after-effect of over-optimization which might have led
to over-training on the spatial parameters rather than
the time-parameter. The second explanation appears
reasonable as it accounts for the fact that the model
did not perform well . Despite the above limitations
however, the model appears to predict the distribution
of crime still relatively well.

Another salient point is the significant differences in
order of magnitude between the scores of Boston and
San Francisco, especially for KL divergence which is
two orders of magnitude less for San Francisco. We at-
tribute this to the smaller bucket size we were resource-
constrained to choose for San Francisco (n = 5 vs
n = 10 for Boston). Because of this, the distribution for
San Francisco was smoother than that of Boston, and
thus easier to fit. Furthermore, in general we believe
that KL is increasing in n as we are trying to fit more
probabilities, and thus adding more terms to the sum (of
KL divergence for a discrete distribution). Therefore,
we do not use KL divergence to compare Gaussian
processes for different n. Instead we use likelihood,
which we present in Figure

Fig. 7. Log likelihood vs bucket size, using the standard ex-
ponential kernel (left) and a linear*periodic kernel (right) on the
Boston data set. It is indeterminate as to what to expect for other
kernels. Theoretically, the n is regularized in the likelihood term
(— % log(2m)), so we expect the likelihood to fall off beyond a
certain n, but due to computational restrictions, we weren’t able to
find that point.

We now consider the order of magnitude of our
results. We were unable to find any papers that present
results in terms of the KL divergence when considering
Gaussian processes. However, intuitively, we interpret
the results to be inconsistent. The baselines for both
cities are orders of magnitudes below the results ob-
tained though GPs. We believe the reason for this
discrepancies has to do with our already low probability



distributions over the region. Any small mismatch can
lead to large % values which can cause the log
function to increased rapidly. However, as with any
software project, despite our best efforts it is entirely
possible that there exists some sort of bug in our code
that leads to the values presented. Despite this, we’re
relatively certain that the results are not invalid, and
instead opt for a second explanation. KL divergence
appears to the ill-suited for our task. The predictive
distributions plotted both as heat-maps and line-graphs
appears to math the test distribution extremely well.

TABLE 1
BOSTON RESULTS FOR VARIOUS METHODS (n = 10)

Method | KL Divergences | Likelihood

Baseline 0.138 NA

Sq Exp 16264.067 -17409.365

Periodic 13922.491 -17801.469

Lin*Per 10979.432 -24808.536

SE*Per 14265.814 -17204.823
TABLE II

SAN FRANCISCO RESULTS FOR VARIOUS METHODS (n = 5)

Method | KL Divergences | Likelihood
Baseline 0.436 NA

Sq Exp 632411 -30978.876
Periodic 631.510 -30192.276
Lin*Per 923.175 -29498.413
SE*Per 648.268 -32984.243

VII. FUTURE WORK

The paper explored the intersection between practical
crime prediction and novel ML techniques for time
series prediction. Results show some promise, though
we propose a more thorough discussion of the topic of
accurately gauging the predictive power of our models.

As referenced throughout the paper, we now focus
on some possible extensions to our work. The first and
simplest involves simply generalizing our methods to
larger data sets. It would be of interest to see what
effects this would have on a Gaussian process. In partic-
ular, we recommend extending the work to the Chicago
dataset which will require significantly increasing the
available computational resources or exploring sparse
GP methods.

A second extension to our work is two-fold: (1)
exploring further combinations of kernels, and (2) opti-
mizing the parameters of the currently explored kernels

further. This second extension is a natural continuation
of the first. While both parts of the extension are of
importance, we recommend the second. Parameter op-
timization has shown to be effective [10], and we expect
such results would also prove true here. Furthermore,
Bayesian optimization is particularly promising for GP
models and for data sets of similar size of our own.

Additionally, we maintained a rather simple model.
We seek to predict crime at a particular location and
time, and therefore used only three parameters for
inputs (latitude, longitude, month). However, we expect
that including and correctly incorporation additional
data into the model will prove beneficial to our abil-
ity to predict crime. Most importantly, the Gaussian
process framework we have presented in this paper
is easily generalization to include more features. The
domain of the function f : Z3 — RT is easily
extensible to incorporate additional parameters. We
expect such additional data will increase the need for
computational resources.

To address the final issue directly, future work in
this area could focus in exploring sparse Gaussian
processes. At at introductory level, sparse Gaussian
processes find a smaller number of pseudo-data points
to get a fair approximation of the GP while being more
tractable as the size of the training data increases.

Another area of improvement is log-Gaussian Cox
processes, which would constrain positive predictions
without need for clipping or converting to log-space.
We suspect that a reason for our extreme KL diver-
gence values is the necessity of adding e for numerical
stability, which caused extreme values in the sum of the
KL divergence. An alternative approach to this positive
constraint might lead to better metrics to compare
against baselines.

We expect all of the above explorations to prove
fruitful.

VIII. CONCLUSION

In this paper we presented a novel approach to
crime prediction that makes use of Gaussian processes.
Despite the fact that our proposed metrics for valida-
tion, such as log-likelihood, RMSE, and KL-divergence
have shown to be somewhat ineffective at capturing
the predictive ability of our system, we believe GPs
to be a tool worth exploring further. With improved
objective measures of predictability, such as teasing out
the effectiveness in learning the proposed dimensions,
we expect future research to prove significantly more



Crimes in Chicago by Year
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Fig. 8. Early exploration of the Chicago data set shows promising
patterns. While most cities across the united states have been ex-
tremely effective at reducing overall crime rates, Chicago’s decline
is the most pronounced. We expect such a problem for pattern
discovery to be well-suited as a testing framework for the predictive
power of GPs.

fruitful, as our more qualitative measure of performance
show significant advantages over baseline.

This paper only serves as exploratory step into
applying advanced machine learning techniques to the
problem of crime prediction. There still remains much
work to be done and a lot of promising areas to
pursue: modern sparse kernels, new data sets, feature
transformations, etc.

While the results we present have only been shown
to have adequate predictive power for the cities of
Boston and San Francisco, we expect such methods
to generalize well to other cities. In particular, we
recommend their application to the city of Chicago,
which as shown in Figure [§] has the potential for posing
unique challenges by pushing the predictive ability of
GPs. With further research, we believe GPs are good
candidates for incorporation into the current system of
crime prediction and analysis in place thorough major
cities in the United State.

It is our sincere hope that this paper will spur
further investigation into applying current ML. methods
to practical problems facing our country today.

All code can be found at https://github.com/
kandluis/crime-prediction, and the specific
data used can be accessed upon request.
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